Exercise 2

Convert each of the following IVPs in 1-8 to an equivalent Volterra integral equation:

$$
y^{\prime}+4 x y=e^{-2 x^{2}}, y(0)=0
$$

Solution

Let

$$
\begin{equation*}
y^{\prime}(x)=u(x) \tag{1}
\end{equation*}
$$

Integrate both sides from 0 to x.

$$
\begin{aligned}
\int_{0}^{x} y^{\prime}(t) d t & =\int_{0}^{x} u(t) d t \\
y(x)-y(0) & =\int_{0}^{x} u(t) d t
\end{aligned}
$$

Substitute $y(0)=0$.

$$
\begin{equation*}
y(x)=\int_{0}^{x} u(t) d t \tag{2}
\end{equation*}
$$

Substitute equations (1) and (2) into the original ODE.

$$
y^{\prime}+4 x y=e^{-2 x^{2}} \quad \rightarrow u(x)+4 x\left[\int_{0}^{x} u(t) d t\right]=e^{-2 x^{2}}
$$

Therefore, the equivalent Volterra integral equation is

$$
u(x)=e^{-2 x^{2}}-4 \int_{0}^{x} x u(t) d t
$$

